Quick Guide to Derivatives

For Ryan Holben's Math 2A class, Fall 2014 at UC Irvine ${ }^{1}$.

Part I

Derivative Rules

1 Algebra with derivatives

Derivatives distribute over sums and differences:

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
$$

and

$$
\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)
$$

Derivatives do not distribute over products of functions. See the product rule in the next section for that.
We can pull constant multiples out of derivatives:

$$
\frac{d}{d x}[c \cdot f(x)]=c \cdot \frac{d}{d x} f(x)
$$

2 Essential derivative rules

$$
\text { Derivative of a constant: } \quad \frac{d}{d x} c=0
$$

$$
\text { Power rule: } \quad \frac{d}{d x} x^{n}=n x^{n-1}
$$

Product rule: $\quad \frac{d}{d x} f(x) \cdot g(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$

Quotient rule: $\quad \frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{[g(x)]^{2}}$

Chain rule: $\left.\left.\left.\quad \frac{d}{d x} f(g(x))\right)=f^{\prime}(g(x))\right) \cdot g^{\prime}(x)\right)$

3 Derivatives of specific functions

3.1 Exponentials and logarithms

$$
\begin{gathered}
\text { Exponential: } \quad \frac{d}{d x} a^{x}=a^{x} \ln (a) \\
\hookrightarrow e: \quad \frac{d}{d x} e^{x}=e^{x} \\
\text { Logarithms: } \quad \frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln (a)} \\
\hookrightarrow \text { Natural logarithm: } \quad \frac{d}{d x} \ln (x)=\frac{1}{x} \\
\hookrightarrow \text { Natural logarithm of }|x|: \quad \frac{d}{d x} \ln |x|=\frac{1}{x}
\end{gathered}
$$

3.2 Trigonometric functions

$$
\begin{gathered}
\frac{d}{d x} \sin (x)=\cos (x) \quad \frac{d}{d x} \cos (x)=-\sin (x) \quad \frac{d}{d x} \tan (x)=\sec ^{2}(x) \\
\frac{d}{d x} \csc (x)=-\csc (x) \cot (x) \quad \frac{d}{d x} \sec (x)=\sec (x) \tan (x) \quad \frac{d}{d x} \cot (x)=-\csc ^{2}(x)
\end{gathered}
$$

3.3 Inverse trigonometric functions

$$
\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x} \cos ^{-1}(x)=\frac{-1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}
$$

For the sake of completeness, here are the remaining inverse trigonometric derivatives. We will not use them in this class, however.

$$
\frac{d}{d x} \csc ^{-1}(x)=\frac{-1}{|x| \sqrt{x^{2}-1}} \quad \frac{d}{d x} \sec ^{-1}(x)=\frac{1}{|x| \sqrt{x^{2}-1}} \quad \frac{d}{d x} \cot ^{-1}(x)=\frac{-1}{1+x^{2}}
$$

Part II
 Techniques

4 Implicit differentiation

Example: Given the following implicit definition of a function, find y^{\prime} :

$$
3 x^{2}+x y+y^{4}-\cos (y)=23
$$

Solution: Take the derivative of both sides with respect to the variable x.

$$
\frac{d}{d x}\left(3 x^{2}+x y+y^{4}-\cos (y)\right)=\frac{d}{d x}(23)
$$

Remember that \mathbf{y} is a function. So the derivative of $x y$ is a product rule, and the derivative of y^{4} as well as the derivative of $\cos (y)$ are chain rules.

$$
\begin{gathered}
6 x+\left(1 \cdot y+x \cdot y^{\prime}+4(y)^{3} \cdot y^{\prime}\right)-\left(-\sin (y) \cdot y^{\prime}\right)=0 \\
6 x+y+x y^{\prime}+4 y^{3} y^{\prime}+\sin (y) y^{\prime}=0
\end{gathered}
$$

Now group all y^{\prime} terms on the left side, and all other terms on the right.

$$
x y^{\prime}+4 y^{3} y^{\prime}+\sin (y) y^{\prime}=-6 x-y
$$

Factor out y^{\prime} on the left and factor out the negative on the right.

$$
y^{\prime}\left(x+4 y^{3}+\sin (y)\right)=-(6 x+y)
$$

Finally, divide so that we have isolated the derivative, y^{\prime}.

$$
y^{\prime}=-\frac{6 x+y}{x+4 y^{3}+\sin (y)}
$$

Notice that our answer involves both x and y. That is okay, since our original equation was not solved for y as a function of x.

5 Using logarithms to remove exponents

If you have a function with a function of x in both the base and the exponent, we can use a logarithm to bring the exponent down before taking the derivative.

Example: Find the derivative of

$$
x^{\sin (x)}
$$

Solution: First we make a full equation by writing

$$
y=x^{\sin (x)}
$$

We can't simply take a logarithm of $x^{\sin (x)}$ on its own and then take its derivative, because that will change our final answer. That is why we have made an equation first, so that we can take a logarithm of both sides. This way our final answer will still be correct.

Now take the natural logarithm of each side.

$$
\ln y=\ln x^{\sin (x)}
$$

Using the exponent rule for logarithms, we can bring down the exponent of $\sin (x)$.

$$
\ln y=\sin (x) \ln x
$$

Now take the implicit derivative of each side, with respect to x.

$$
\frac{d}{d x} \ln y=\frac{d}{d x} \sin (x) \ln x
$$

The derivative of $\ln y$ is $\frac{1}{y} \cdot y^{\prime}$, by the chain rule. The right side of the equation uses the product rule.

$$
\frac{y^{\prime}}{y}=\cos (x) \cdot \ln x+\sin (x) \cdot \frac{1}{x}
$$

Now multiply both sides by y to isolate y^{\prime}.

$$
y^{\prime}=y\left(\cos (x) \cdot \ln x+\sin (x) \cdot \frac{1}{x}\right)
$$

Unlike the previous example, here our derivative should involve just x, and not y. This is because the function that we are being asked to find the derivative of is not implicitly defined. So now simply plug in $y=x^{\sin (x)}$

$$
y^{\prime}=x^{\sin (x)}\left(\cos (x) \ln x+\sin (x) \frac{1}{x}\right)
$$

6 Logarithmic differentiation

Logarithmic differentation is a technique in which we take the natural logarithm of a function before taking its derivative. We then use logarithm rules to avoid having to do the product, quotient, and even chain rule when taking the derivative.

The technique is a more general form of the previous example.
Example: Compute

$$
\frac{d}{d x} \frac{\sqrt{x^{2}-3}}{x^{7} \sin (x)}
$$

Solution: A key thing to point out here is that logarithmic differentation is used to make taking derivatives easier. However, it's rarely required. Therefore, it is unlikely a problem will explicitly tell you to use this technique!

So how do we know when to use it? Well, in this example, I see a several terms multiplied or divided by each other. Additionally, I see several exponents (specifically $\frac{1}{2}$ and 7). All of these things that I observe will make for annoying derivatives, but can be easily simplified if they were inside a logarithm. Let's begin. The approach here is identical to the previous example's.

First make an equation.

$$
y=\frac{\sqrt{x^{2}-3}}{x^{7} \sin (x)}
$$

Take a natural logarithm of each side.

$$
\ln y=\ln \left(\frac{\sqrt{x^{2}-3}}{x^{7} \sin (x)}\right)
$$

Now before we take any derivatives, apply logarithm rules.

$$
\begin{gathered}
\ln y=\ln \left(\sqrt{x^{2}-3}\right)-\ln \left(x^{7} \sin (x)\right) \\
\ln y=\ln \left(x^{2}-3\right)^{\frac{1}{2}}-\left(\ln \left(x^{7}\right)+\ln \sin (x)\right) \\
\ln y=\frac{1}{2} \ln \left(x^{2}-3\right)-7 \ln x-\ln \sin (x)
\end{gathered}
$$

We have simplified our logarithms as far as we can. Now we are ready to take the derivative.

$$
\begin{gathered}
\frac{d}{d x} \ln y=\frac{d}{d x}\left[\frac{1}{2} \ln \left(x^{2}-3\right)-7 \ln x-\ln \sin (x)\right] \\
\frac{y^{\prime}}{y}=\frac{1}{2} \frac{2 x}{x^{2}-3}-7 \frac{1}{x}-\frac{\cos (x)}{\sin (x)}
\end{gathered}
$$

Multiply both sides by y and simplify a bit.

$$
y^{\prime}=y\left(\frac{x}{x^{2}-3}-\frac{7}{x}-\cot (x)\right)
$$

Once again, since the problem was originally not an implicit differentiation problem, our final answer should be given entirely in terms of x.

$$
y^{\prime}=\frac{\sqrt{x^{2}-3}}{x^{7} \sin (x)}\left(\frac{x}{x^{2}-3}-\frac{7}{x}-\cot (x)\right)
$$

